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No goodies... lame
performance!
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THE CAKE WAS GREAT AND
WAS DELICIOUS, BUT DEEP DOWN INSIDE, HE
KNEW THAT SOME DAY HIS PARENTS WOULD

DISCOVER THAT “F™ WASN'T FOR FANTASTIC,

AND THEN NONE OF IT WOULD BE WORTH IT.



Dealing with correlation

Random Effects, Mixed Models &
Generalized Estimating Equations

Wrapping up Mixed Models



AN EXAMPLE WITH TWO FACTORS

Density of Anaecypris hispanica as a function of current
velocity (corrT) and river (riverI) - dataAHD.txt

One might be random... you have to explore
Create a small report describing the data
Model A. hispanica density as a function of the covariates

Take you conclusions

> head({dataaHD)
dah riverI riverI2 corrf corr

1 28.68104 Degebe 1 high 9.138035
2 24.91680 Degebe 1 high 7.011055
3 15. 30073 Degebe 1 median 5.146127
4 16.01281 Degebe 1 Tow 1. 667494
5 27.19677 Degebe 1 high 7.318869
6 25.01242 Degebe 1 high 9.406168

At the end of the class I'll give you (I've given you ;) my code that allows you to see how | generated the
data and how the different models retrieve different components of the “truth”.



#Data are made up - just for biological context

#density of A hispanica dah in stretches of river

set.seed(444)
set.seed(555)

rivers=c("Degebe","vascao",

Odelouca

Lucefecit","Ardila","Ccaia

Guadiana')

" #Fnumber of rivers
nr=length(rivers)
#observations per ri
obr=10

ver

riverI=rep(rivers,each=obr)
riverI2=rep(l:nr,each=cbr)
#total number of obvservations

n=nr~obr

#standard deviation of the random effect

sdre=6

re=rnorm(nr ,mean=0,sd=sdre)
#velocity of current, in m por minuto

corr=runif(n,0,10)

#there's about 1/3 of each type of river
corrf=ifelse(corr<10/3,"Tow",ifelse(corr>(2%10/3), " high", "median™))

ensity o
dah=

anaecypr

“I(corrf=="Tow" )+
“I(corrf=="median")+
14F (corrf=="high")+

15

riverI==rivers[1l])"
(riverI==rivers[2])"
(riverI==rivers[3])"
(riverI==rivers[4])*
(riverI==rivers[5])~
(riverI==rivers[6])*
(riverI==rivers[7])"

re[l]
re[2]
re[3]
rel(4]
re[5]
re[6]

rel7]
[+rnorm(n,mean=0, sd=sderro) |

++++ + + +
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Using velocity as a factor variable in the mixed effects model

= summary (1me{dah~corrf,random=-~1|riverI,data=dataaHD))
Linear mixed-effects model fit by REML
Data: dataaHD
ATC BIC TogLik
391.4507 402.4742 -190.7254

Random effects:
Formula: ~1 | riverI
(Intercept) Residual

stdpev: [ 6.811164| |3.28974|
4+ 14728 Fixed effects: dah ~ corrf
value std.Error DF  t-value p-value
(Intercept) |2B.5E&8381| 2.695333 61 10.6060622 0
|4+3-(14+14)=3-14=-11 corrflow —9. 905773 1.019084 61 -9.721255 Q
corrfmedianf=#-30575%| 1.159858 61 -6.298837 0
Correlation:
|4+6-(14+14)=6-14=-8 (Intr) crrflw
corrflow -0.235

corrfmedian -0.220 0.563

standardized within-Group Residuals:
Min ql Med Q3 Max
-3.06202233 -0.68B268447 0.04239849 0.58462158 2.57127416

Number of Observations: 70
Number of Groups:|7




We could also compare the estimated value of the random effect

associated with each river, and the true random effect value used in
the generation of the data

> unique(round(fitted(Imel,level = 1)-fitted(Imel,level = 0),2))

[1] -2.96 1.35 1.18 9.59 -12.30 3.96 -0.82
> round(re,2)

[1] -1.98 3.02 2.25 11.33 -10.68 5.31 -0.94

Understanding this bit of code is actually quite complicated! It requires:

|. looking at “Aula 18” to understand what the different levels of a prediction from a mixed model
correspond to

|. level=0 — population level
2. level=1 — level of the random effect
2. Realizing that the difference between those gives you the estimated random effect

3. Realizing that the rounding is used just to make the visualization more digestible (and avoiding
issues with rounding)



A CONCLUSION ABOUT
FIXED vs. RANDOM EFFECTS

Whether a factor is included as a random effect or not is often
a philosophical question. If

One is interested in the specific levels of the factor (e.g. each
of the rivers) then it should be a fixed effect

One is interested in the variability across the different levels
of the random effect, but not on each river per sem then it
should be a random effect

The discussion and the conclusions will necessarily be different!




A CONCLUSION ABOUT
RANDOM EFFECTS

Random effects are often used to “soak up” variation that exists in the data but
which we can’t describe

In fact, river is not really a random factor at all (say what?) It is just a proxi for
stuff we can’t explain!

What happens is that there are some differences across rivers, e.g.
some have dams and some don’t,
some are wide and some are narrow,
some are surrounded by forests some by agricultural fields,

Etc.



A CONCLUSION ABOUT
RANDOM EFFECTS

If we had all the (relevant) variables, once these were all included in a model, we
would not need river as a random effect

But because we never do, this is a useful way to remove some of the variability
that otherwise unexplained would end up in the error term, but in this way is
explained by the random effect

As a consequence, it makes it more likely that we will find relevant variables
amongst the ones we have collected... and that is a good thing ©



A NOTE ON ML vs. REML

When fitting mixed models the default is to use REML, not ML

This is because ML (for technical reasons beyond what | want to torture you about
— 4trbwlwttya) produces biased estimates of variances

REML is shown to have better properties

However, REML does not allow you to do (in general, it does under certain

conditions 4trbwlwttya) likelihood ratio tests, and so model selection might be
harder with REML

This is why e.g. Zuur et al. 2009 recommend the procedure that was referred to in
“Aula 187, slide 31, now slightly updated in the next slide



AULA 18, SLIDE 31, UPDATED

Model selection in a mixed model context (a possible top-down approach)

|. Start from a full model with all relevant fixed effects

2. Find best random structure (e.g. via AIC, or because it is the structure that respects your experiment.

Comparing two models with nested random structures cannot be done with ML because the estimators for the
variance terms are biased)

3. Conditional on that random effect structure, select the relevant (fixed) effects

(To compare models with nested fixed effects (but with the same random structure), ML estimation must be used and
not REML)

4. Present the final model using REML estimation

e.g.recommended by Diggle et al. (2002) The Analysis of Longitudinal Data. Oxford University Press, see also page 122 of Zuur et al. 2009



Dealing with correlation

Random Effects, Mixed Models &
Generalized Estimating Equations

Generalized Estimating Equations



When we consider a LM, GLM or a GAM, we assume the data are
independent

This is often not the case, and not accounting for the correlation
structure will tend to lead to errors

So... why is it relevant to account for the correlation structure!?

|. It does often not change much the parameter estimates... but

2. |t changes the variance of the parameters, which means that
inferences might change!

In particular, we will often find significant predictors than we should!

Why: because with positive correlation (the most common case) we
think we have more data than we actually have!

Strong (positive) correlation s Smaller effective sample size



When we consider a LM, GLM or a GAM, we assume the data are
independent

Recall for|independent data, the error term: e ~ Normal(0,0?) is the same as
Normal(0,02I) where Iis a N x N diagonal matrix (which means it has a diagonal
of 1's and zeros in the off diagonals):

r 0 0 0 0 ... 0
O 1 0 0 0 ... 0
00 1 0 0 ... 0
o 0 0 1 0 ... 0
O 0 0 0 1 ... 0

iiiii

iiiii




Generalized Estimating Equations (GEE’s)

GGEs represent an alternative to mixed models, where you model
the relationship between the mean value and the variance (of a
response variable), not the actual distribution of the data

These are also called marginal models or population averaged
models, because in this case you are not interested in the response
at the level of the “random effects” (if so you need a GLMM or a
GAMM), you are just interested in modelling the response at the
population level but accounting for the adequate correlation
structure present in the data.



Generalized Estimating Equations (GEE’s)

GEEs can be used to analyze repeated measurements (either or not
over time, in the later case often called longitudinal repeated
measurements) data.

Much material in these slides was blatantly stolen from Figure 63: Scatter plots of the number of hours post-application vs hydration scores
material kindly shared by my good friend Monique for independent data and with correlated errors for 20 subjects.

MacKenzie — so many thanks Mon © https://moniquemackenzie.wixsite.com/drmoniquemackenzie

These can be used to model continuous, binary, proportional, or count

data (so, essentially the same type of data we have already dealt with
in a GLM or GAM framework).


https://moniquemackenzie.wixsite.com/drmoniquemackenzie

A good way to model response variable accounting for
correlation structures in the data when we are not
really interested about the random effects is using GEEs

package function

GEEs can be implemented in R via: geepack geeglm

R syntax

geeglm(formula, id, data, corstr, family)

defines groups  defines the correlation structure defines mean-variance relation

GEEs can include linear terms but also non-linear smooth terms... but that is not trivial to do.



So the key thing is to decide what is the expected correlation structure inside each “unit”

For illustration, imagine we have just 4 observations for an individual (n; = 4),

and an AR(1) model is a sensible representation of the correlated pattern within
individuals. This would give a n; x n;|AR(1) |block (n; = 4):

1 p p? P
p 1 p P
P> p 1 p

ot op 1

So, if our data set contained just 2 individuals and 4 observations for each, the
8 x 8 block-diagonal correlation matrix would look like:

L p 2 P10 0 0 0]
p 1L p P20 0 0 O
f-'f'g p 1L p 0—0_0 O Each one of these
> p2 p 10O 0 0 0 is a block of the
O 0 0 01 p p= p° block correlation
0O 0 0 0|p 1 p p? matrix
0O 0 0 0lp> p 1 p
00 0 0 > p? p 1




e.g. For two medical centres, each with 4 individuals measured just once each,

exchangeable /compound symmetry|structure looks like:

0O 0 0 0

CoOoOoooT v RO~
CO QO COCT T D
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B Journal of Statistical Software
January 2006, Volume 15, Issue 2. http://www.jstatsoft.org/

The R Package geepack for Generalized Estimating

Equations
Ulrich Halekoh Sgren Hgjsgaard
Danish Institute of Agricultural Sciences Danish Institute of Agricultural Sciences
Jun Yan

University of Iowa

Defining the relation between mean value and variance is via argument family

4.1. Variance and link functions (family)

The variance function is specified by the family argument in geeglm and is identified by the
name of the corresponding distribution in a generalized linear model. The available variance
functions are given in Table 4. The available link functions for the mean are the same as
those in glm with the exception of the cauchit link for the binomial family.

name function o)
gaussian identity

binomial (1 — ), p e (0,1)
poisson  p, =0

gamma ;;E, =10

Table 4: Variance functions in geeglm.



Journal of Statistical Software
January 2006, Volume 15, Issue 2. http://www.jstatsoft.org/

The R Package geepack for Generalized Estimating

Equations
Ulrich Halekoh Sgren Hgjsgaard
Danish Institute of Agricultural Sciences Danish Institute of Agricultural Sciences
Jun Yan

University of Iowa

Defining the relation between mean value and variance is via argument family

4.1. Variance and link functions (family)

The variance function is specified by the family argument in geeglm and is identified by the
name of the corresponding distribution in a generalized linear model. The available variance
functions are given in Table 4. The available link functions for the mean are the same as
those in glm with the exception of the cauchit link for the binomial family.

(i1 The R Package geepack for Generalized Estimating Fauations
Defining the correlation structure i Rl
is via argument Ccorstr independence| COR(Yq Yi) =0. 71
exchangeable| COR(Ys Yol =0, 21
| > arl COR[Yi, Yie) = o'
mstructured COR(Y,, Yip) = ot £ 0

Table 5: Working correlations in geeglm.

Cada elemento dos blocos tem uma correlagao (potencialmente) diferente



Unstructured correlation matrix...

o] 012 1K
2
021 05 O2K
2
| OkK1 '+ OKK-1 Ok |

» For a p-dimensional covariance matrix, p(p + 1)/2 parameters
are required, becoming large very rapidly as p increases

This is the hardest to fit and not recommended if you don’t know exactly what
you are doing. The large number of parameters means that the model might
become unstable.



I A real life example

200 .

FIG. 1. Example dive profile of a
400 = Blainville’s beaked whale tagged in
the waters adjacent to El Hiemo,
Canary Islands. Bold sections indicate
the presence of foraging clicks.
Shorter, upper markers delineate vocal
600 i periods, while lower, longer markers
indicate the lengths of individual dive
cycles. The final dive featured tag
detachment and was not analyzed.
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Warren,V. E.; Marques, T.A.; Harris, D.; Tyack, P. L.; Thomas, L.; de Soto, N.A.; Hickmott, L. & Johnson, M. P. 2017 Spatio-temporal variation in
click production rates of beaked whales: implications for passive acoustic density estimation The Journal of the Acoustical Society of America
141:1962-1974



Blainville's vocal period click rate Cuvier's vocal period click rate
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FIG. 4. Inter-annual variation in vocal period and dive cycle click production rates for Blainville’s (left) and Cuvier’s (right) beaked whales. Box plots consist
of median, interquartile range and maximum/minimum extremes. In the Blainville's data, boxes in white areas represent animals tagged in El Hierro and boxes
in grey areas (2006 and 2007) indicate tags deployed in the Bahamas. In the Cuvier’s plots, boxes in the white area represent Liguria, and boxes in the grey
area (2010, 2011, and 2013) are southern California deployments. See Table T for respective sample sizes. Y axes scales differ between vocal period plots
(upper) and dive cycle plots (lower).

Warren,V. E.; Marques, T.A.; Harris, D.; Tyack, P. L.; Thomas, L.; de Soto, N.A.; Hickmott, L. & Johnson, M. P. 2017 Spatio-temporal variation in

click production rates of beaked whales: implications for passive acoustic density estimation The Journal of the Acoustical Society of America
141:1962-1974



Runs tests revealed the presence of weak autocorrelation
within model residuals due to longitudinal sampling, 1.e.,
multiple observations of the same animal over time.
Generalized Estimating Equations (GEEs) were therefore
used in R (version 3.3.1; package “geepack,” version 1.2-0;
R core Team, 2015; Hojsgaard er al., 2006), with “Tag ID”

2016, for a similar approach). GEEs are appropriate for data
containing a large number of clusters (tag deployments) with
relatively few observations (dives or dive cycles) per cluster
(Bailey et al., 2013).

Warren,V. E.; Marques, T.A.; Harris, D.; Tyack, P. L.; Thomas, L.; de Soto, N.A.; Hickmott, L. & Johnson, M. P. 2017 Spatio-temporal variation in

click production rates of beaked whales: implications for passive acoustic density estimation The Journal of the Acoustical Society of America
141:1962-1974



TODAY’s TASK

Revisit two datasets from FT7b4ME 20 |1 2019.pdf in “Aula 19”

7. Find a GLM that best fits the data “Owls.txt”, where you are trying to explain the begging behavior of owls
offspring when the parents are absent from the nest. The variable “SiblingNegotiation” represents the number of
calls produced by the chicks in the nest during a 30 second period, while “BroodSize” represents the size of the
brood. More details about this data can be found in Zuur et al. 2009.

Account for variation over time in the same nest

8. The data “DeerEcervi.txt” contains the incidence of E. cervi parasites in deer pellets, and we have also the
corresponding sex, length and farm the deer were on. How many farms were available? Ignore them for now, and
model the presence/absence of parasites in pellets as a function of deer characteristics. This is a dataset also used by
Zuur et al. 2009.

Account for variation across farms



If you are looking at
this slide,

| have pressed click

onhe time too many

©



